Mechanisms of tubulogenesis and endothelial phenotype expression by MSCs.
نویسندگان
چکیده
Stem cell-based therapies are a promising new avenue for treating ischemic disease and chronic wounds. Mesenchymal stem cells (MSCs) have a proven ability to augment the neovascularization processes necessary for wound healing and are widely popular as an autologous source of progenitor cells. Our lab has previously reported on PEGylated fibrin as a unique hydrogel that promotes spontaneous tubulogenesis of encapsulated MSCs without exogenous factors. However, the mechanisms underlying this process have remained unknown. To better understand the therapeutic value of PEGylated fibrin delivery of MSCs, we sought to clarify the relationship between biomaterial properties and cell behavior. Here we find that fibrin PEGylation does not dramatically alter the macroscopic mechanical properties of the fibrin-based matrix (less than 10% difference). It does, however, dramatically reduce the rate of diffusion through the gel matrix. PEGylated fibrin enhances the tubulogenic growth of encapsulated MSCs demonstrating fluid-filled lumens by interconnected MSCs. Image analysis gave a value of 4320 ± 1770 μm total network length versus 618 ± 443 μm for unmodified fibrin. PEGylation promotes the endothelial phenotype of encapsulated MSCs--compared to unmodified fibrin--as evidenced by higher levels of endothelial markers (von Willebrand factor, 2.2-fold; vascular endothelial cadherin, 1.8-fold) and vascular endothelial growth factor (VEGF, up to 1.8-fold). Prospective analysis of underlying molecular pathways demonstrated that this endothelial-like MSC behavior is sensitively modulated by hypoxic stress, but not VEGF supplementation as evidenced by a significant increase in VEGF and MMP-2 secretion per cell under hypoxia. Further gain-of-function studies under hypoxic stress demonstrated that hypoxia culture of MSCs in unmodified fibrin could increase both vWF and VE-cadherin levels to values that were not significantly different than cells cultured in PEGylated fibrin. This result corroborated our hypothesis that the diffusion-limited environment of PEGylated fibrin is augmenting endothelial differentiation cues provided by unmodified fibrin. However, MSC networks lack platelet endothelial cell adhesion molecule-1 (PECAM-1) expression, which indicates incomplete differentiation towards an endothelial cell type. Collectively, the data here supports a revised understanding of MSC-derived neovascularization that contextualizes their behavior and utility as a hybrid endothelial-stromal cell type, with mixed characteristics of both populations.
منابع مشابه
Mesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor –A
Background: Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). Methods: VEGF-A was expressed in E. coli BL21 (DE3) and BL21...
متن کاملTumor Associated Mesenchymal Stromal Cells Show Higher Immunosuppressive and Angiogenic Properties Compared to Adipose Derived MSCs
Background: Differentiation, migratory properties and availability of Mesenchymal Stromal Cells (MSC) have become an important part of biomedical research. However, the functional heterogeneity of cells derived from different tissues has hampered providing definitive phenotypic markers for these cells. Objective: To characterize and compare the phenotype and cytokines of adipose derived MSCs (...
متن کاملMatrix composition and mechanics direct proangiogenic signaling from mesenchymal stem cells.
The secretion of trophic factors that promote angiogenesis from mesenchymal stem cells (MSCs) is a promising cell-based therapeutic treatment. However, clinical efficacy has proved variable, likely on account of ill-defined cell delivery formulations and the inherent complexity of cellular secretion. Here we show how controlling the mechanical properties and protein composition of the extracell...
متن کاملVEGF secreted by mesenchymal stem cells mediates the differentiation of endothelial progenitor cells into endothelial cells via paracrine mechanisms
Stem cell therapy is a promising treatment strategy for ischemic diseases. Mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) adhere to each other in the bone marrow cavity and in in vitro cultures. We have previously demonstrated that the adhesion between MSCs and EPCs is critical for MSC self‑renewal and their multi‑differentiation into osteoblasts and chondrocytes. In the ...
متن کاملOver expression of Nrf2 in Umbilical Cord-derived Mesenchymal Stem Cells Up regulates Cytoprotective Genes, TXNRD1 and GCLC
Background: Mesenchymal stem cells (MSCs) are ideal cells for cell and gene therapy. However, the low survival of MSCs after transplantation has limited their applications. We aimed to evaluate the expression of cytoprotective genes including NQO1, TXNRD1, HO-1, GCLC following the over expression of Nrf2 in umbilical cord-derived MSCs (UC-MSCs). Methods: 3-5 passages of UC-MSCs were cultured. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microvascular research
دوره 99 شماره
صفحات -
تاریخ انتشار 2015